Course of Conversation: Biotechnology and Health Security

Gigi Kwik Gronvall, PhD, a senior associate at the Johns Hopkins Center for Health Security, teaches the Biotechnology and Health Security elective as visiting faculty in the department of environmental health and engineering at the Johns Hopkins Bloomberg School of Public Health. The course will be offered for the first time in spring 2018.

In the following Q&A, Gigi explains what students should expect from her course and why the material is so valuable to the public health curriculum.

What are the learning objectives of your Biotechnology and Health Security course?

Gigi Kwik Gronvall, PhD

Gigi Kwik Gronvall, PhD

The goal is to introduce public health students to the advances in synthetic biology and biotechnology (e.g., CRISPR, DNA synthesis technologies) to give them a preview of the tools they might have as public health professionals in the future. I also want to expose them to some of the downsides of biotech—some of the things they’ll have to deal with in a negative way.

We’ll address what’s called the “dual use dilemma,” the idea that some things could be beneficial for medical research but could, if misused, lower barriers to biological weapons development. I’ll also encourage students to consider policy options to reduce biosecurity vulnerabilities and expand norms against biological weapons.

I’m hoping to bring in a number of guest speakers to address these issues, including some in government who are setting policies for this field.

Who should take the course?

Students who are intrigued by policy will find this class interesting. Public health and biotechnology touch more than the people who are in those fields. The material won’t be overly scientific and the readings will not be overly technical.

I’m really looking forward to hearing from the students—their ideas on what we should be doing for policies to help shape emerging technologies. Gene drives won’t get developed without funding, safety considerations won’t be put into place without leadership. So, it’s not just the technologies themselves, it’s also the environment that they’re in. I’m interested in exploring that with students and hearing what seems most important to them.

How will including an historical look at biological weapons use benefit students?

Many people don’t realize that biology could be used as a weapon because it hasn’t happened in their lifetime, or it has but only in small terrorism cases. Biology was once considered to be a legitimate form of warfare and the major nations of the world had expansive biological weapons programs. Students should certainly be aware that this was part of the human experience and humans could go there again, and we need to do what we can to prevent that.

Why is it valuable for public health students to learn about biotechnology?

A comprehensive look at how biotechnology can affect public health is not currently part of the conventional public health curriculum. I wouldn’t be doing this if I wasn’t certain it was vitally important.

Biotechnology innovations will happen no matter what, so students need to know how to take advantage of the positive aspects for public health. These technologies aren’t developed in a vacuum. If the next generation of public health professionals wants biotech to be in the public interest, in the public health interest, then they need to know about it and help shape its future.

Take synthetic biology (bioengineering that makes biology more useful). There are opportunities for public health that were definitely not possible until recently. For example, the use of gene drives to eliminate disease like dengue or malaria by going after mosquitos, or being able to treat inherited diseases. There are options that we can see now and there will be so much more in the future.

Subject matter aside, what’s unique about this course?

I’m committed to making written assignments useful, so I’m exploring ways for students to write about the material and improve their professional communication skills at the same time. Whether these students pursue careers in government, academia, or otherwise, it’s critical for them to communicate in a concise, persuasive way.

What’s the most important key takeaway for students?

The lessons about new technologies and how they affect health are broader than just this class. We’ve seen many advances in biotechnology recently that affect public health and those advances are not going to stop. This class will provide a grounding for students as they absorb news on new scientific developments so they are able to analyze where technologies are going and think about ways technologies can be properly incorporated, regulated, or controlled.

This goes beyond biology. With nanotechnology in other fields, with artificial intelligence, you have groups of scientists working in one direction and in the other you have governments considering how to limit misuse and promote public interest.

What got you interested in biotechnology and health security policy?

I was working at a leading cancer treatment and research institution as a laboratory technician before I got my PhD. My job was to create oligos (short pieces of DNA), and it occurred to me that somebody could make something that they’re not supposed to make—for example, a virus. I brought this up to my supervisor, and he said, “Don’t worry. If that happens—if someone were to come up with a scary virus—we’ll just get a whole bunch of smart people together to think about it and do something.” I looked around and thought, how can top people at this visionary organization fail to recognize that some problems that could cause a lot of damage are too difficult and too complex for a group of smart people to solve?

At that moment I realized there was a compelling need for real policy work in the biotechnology space. And I wanted to be on the forefront of it.


Gigi Gronvall is the author of Synthetic Biology: Safety, Security, and Promise. She can be reached by email at and on Twitter at @ggronvall.